Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 881
Filtrar
1.
Nucleic Acids Res ; 52(7): 3938-3949, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38477328

RESUMO

In the hypothetical RNA world, ribozymes could have acted as modern aminoacyl-tRNA synthetases (ARSs) to charge tRNAs, thus giving rise to the peptide synthesis along with the evolution of a primitive translation apparatus. We previously reported a T-boxzyme, Tx2.1, which selectively charges initiator tRNA with N-biotinyl-phenylalanine (BioPhe) in situ in a Flexible In-vitro Translation (FIT) system to produce BioPhe-initiating peptides. Here, we performed in vitro selection of elongation-capable T-boxzymes (elT-boxzymes), using para-azido-l-phenylalanine (PheAZ) as an acyl-donor. We implemented a new strategy to enrich elT-boxzyme-tRNA conjugates that self-aminoacylated on the 3'-terminus selectively. One of them, elT32, can charge PheAZ onto tRNA in trans in response to its cognate anticodon. Further evolution of elT32 resulted in elT49, with enhanced aminoacylation activity. We have demonstrated the translation of a PheAZ-containing peptide in an elT-boxzyme-integrated FIT system, revealing that elT-boxzymes are able to generate the PheAZ-tRNA in response to the cognate anticodon in situ of a custom-made translation system. This study, together with Tx2.1, illustrates a scenario where a series of ribozymes could have overseen aminoacylation and co-evolved with a primitive RNA-based translation system.


Assuntos
Anticódon , Biossíntese de Proteínas , RNA Catalítico , Aminoacil-RNA de Transferência , RNA Catalítico/metabolismo , RNA Catalítico/genética , Anticódon/genética , Aminoacil-RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/genética , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacilação de RNA de Transferência , Aminoacilação , Elongação Traducional da Cadeia Peptídica
2.
Nat Commun ; 14(1): 5582, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696823

RESUMO

Accurate protein synthesis is determined by the two-subunit ribosome's capacity to selectively incorporate cognate aminoacyl-tRNA for each mRNA codon. The molecular basis of tRNA selection accuracy, and how fidelity can be affected by antibiotics, remains incompletely understood. Using molecular simulations, we find that cognate and near-cognate tRNAs delivered to the ribosome by Elongation Factor Tu (EF-Tu) can follow divergent pathways of motion into the ribosome during both initial selection and proofreading. Consequently, cognate aa-tRNAs follow pathways aligned with the catalytic GTPase and peptidyltransferase centers of the large subunit, while near-cognate aa-tRNAs follow pathways that are misaligned. These findings suggest that differences in mRNA codon-tRNA anticodon interactions within the small subunit decoding center, where codon-anticodon interactions occur, are geometrically amplified over distance, as a result of this site's physical separation from the large ribosomal subunit catalytic centers. These insights posit that the physical size of both tRNA and ribosome are key determinants of the tRNA selection fidelity mechanism.


Assuntos
Magnoliopsida , Aminoacil-RNA de Transferência , Aminoacil-RNA de Transferência/genética , RNA Mensageiro/genética , Anticódon , Ribossomos , Biossíntese de Proteínas
3.
Postepy Biochem ; 69(1): 42-46, 2023 03 31.
Artigo em Polonês | MEDLINE | ID: mdl-37493554

RESUMO

Charcot-Marie-Tooth (CMT) is a genetic, incurable neurodegenerative disease which etiology is linked to mutations in almost hundred different genes. The disease affects peripheral nerves which control muscle work and their myelin sheath resulting in progressive muscular dystrophy. The most remarkable genes which mutations are associated with CMT phenotype, are genes encoding aminoacyl-tRNA synthases (aaRS). These proteins are enzymes which common role is to catalyze the reaction of amino acids transfer into tRNA molecules and thereby, to participate in translation of genetic code into the language of proteins. aaRS have been gaining new functions resulting from the mutations acquired in the course of evolution. These functions remain unidentified, despite unraveling the binding partners of aaRS. However, the ongoing molecular studies, which focus on mutations carried by CMT patients and model organisms, bring the researchers closer to unravel the novel functions of aaRS and their potential key role in CMT pathogenesis.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Doenças Neurodegenerativas , Humanos , Aminoacil-RNA de Transferência/genética , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Mutação , RNA de Transferência/genética , RNA de Transferência/metabolismo
4.
Nature ; 617(7959): 200-207, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020024

RESUMO

In all species, ribosomes synthesize proteins by faithfully decoding messenger RNA (mRNA) nucleotide sequences using aminoacyl-tRNA substrates. Current knowledge of the decoding mechanism derives principally from studies on bacterial systems1. Although key features are conserved across evolution2, eukaryotes achieve higher-fidelity mRNA decoding than bacteria3. In human, changes in decoding fidelity are linked to ageing and disease and represent a potential point of therapeutic intervention in both viral and cancer treatment4-6. Here we combine single-molecule imaging and cryogenic electron microscopy methods to examine the molecular basis of human ribosome fidelity to reveal that the decoding mechanism is both kinetically and structurally distinct from that of bacteria. Although decoding is globally analogous in both species, the reaction coordinate of aminoacyl-tRNA movement is altered on the human ribosome and the process is an order of magnitude slower. These distinctions arise from eukaryote-specific structural elements in the human ribosome and in the elongation factor eukaryotic elongation factor 1A (eEF1A) that together coordinate faithful tRNA incorporation at each mRNA codon. The distinct nature and timing of conformational changes within the ribosome and eEF1A rationalize how increased decoding fidelity is achieved and potentially regulated in eukaryotic species.


Assuntos
Bactérias , Biossíntese de Proteínas , Humanos , Bactérias/genética , Bactérias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Imagem Individual de Molécula , Microscopia Crioeletrônica , Ribossomos/genética , Ribossomos/metabolismo
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220038, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633283

RESUMO

Ribosomal incorporation of d-α-amino acids (dAA) and N-methyl-l-α-amino acids (MeAA) with negatively charged sidechains, such as d-Asp, d-Glu, MeAsp and MeGlu, into nascent peptides is far more inefficient compared to those with neutral or positively charged ones. This is because of low binding affinity of their aminoacyl-transfer RNA (tRNA) to elongation factor-thermo unstable (EF-Tu), a translation factor responsible for accommodation of aminoacyl-tRNA onto ribosome. It is well known that EF-Tu binds to two parts of aminoacyl-tRNA, the amino acid moiety and the T-stem; however, the amino acid binding pocket of EF-Tu bearing Glu and Asp causes electric repulsion against the negatively charged amino acid charged on tRNA. To circumvent this issue, here we adopted two strategies: (i) use of an EF-Tu variant, called EF-Sep, in which the Glu216 and Asp217 residues in EF-Tu are substituted with Asn216 and Gly217, respectively; and (ii) reinforcement of the T-stem affinity using an artificially developed chimeric tRNA, tRNAPro1E2, whose T-stem is derived from Escherichia coli tRNAGlu that has high affinity to EF-Tu. Consequently, we could successfully enhance the incorporation efficiencies of d-Asp, d-Glu, MeAsp and MeGlu and demonstrated for the first time, to our knowledge, ribosomal synthesis of macrocyclic peptides containing multiple d-Asp or MeAsp. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Assuntos
Aminoácidos , Fator Tu de Elongação de Peptídeos , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Aminoácidos/genética , Ribossomos/metabolismo , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
6.
J Biol Chem ; 298(11): 102509, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36300356

RESUMO

Translation terminates by releasing the polypeptide chain in one of two chemical reactions catalyzed by the ribosome. Release is also a target for engineering, as readthrough of a stop codon enables incorporation of unnatural amino acids and treatment of genetic diseases. Hydrolysis of the ester bond of peptidyl-tRNA requires conformational changes of both a class I release factor (RF) protein and the peptidyl transferase center of a large subunit rRNA. The rate-limiting step was proposed to be hydrolysis at physiological pH and an RF conformational change at higher pH, but evidence was indirect. Here, we tested this by activating the ester electrophile at the Escherichia coli ribosomal P site using a trifluorine-substituted amino acid. Quench-flow kinetics revealed that RF1-catalyzed release could be accelerated, but only at pH 6.2-7.7 and not higher pH. This provided direct evidence for rate-limiting hydrolysis at physiological or lower pH and a different rate limitation at higher pH. Additionally, we optimized RF-free release catalyzed by unacylated tRNA or the CCA trinucleotide (in 30% acetone). We determined that these two model release reactions, although very slow, were surprisingly accelerated by the trifluorine analog but to a different extent from each other and from RF-catalyzed release. Hence, hydrolysis was rate limiting in all three reactions. Furthermore, in 20% ethanol, we found that there was significant competition between fMet-ethyl ester formation and release in all three release reactions. We thus favor proposed mechanisms for translation termination that do not require a fully-negatively-charged OH- nucleophile.


Assuntos
Ésteres , Fatores de Terminação de Peptídeos , Fatores de Terminação de Peptídeos/metabolismo , Hidrólise , Ésteres/metabolismo , Ribossomos/metabolismo , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Códon de Terminação/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Terminação Traducional da Cadeia Peptídica/fisiologia
7.
J Phys Chem B ; 126(42): 8447-8459, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36251478

RESUMO

Protein synthesis involves a complex series of large-scale conformational changes in the ribosome. While long-lived intermediate states of these processes can be characterized by experiments, computational methods can be used to identify the interactions that contribute to the rate-limiting free-energy barriers. To this end, we use a simplified energetic model to perform molecular dynamics (MD) simulations of aminoacyl-tRNA (aa-tRNA) accommodation on the ribosome. While numerous studies have probed the energetics of the early stages of accommodation, we focus on the final stage of accommodation, where the 3'-CCA tail of aa-tRNA enters the peptidyl transferase center (PTC). These simulations show how a distinct intermediate is induced by steric confinement of the tail, immediately before it completes accommodation. Multiple pathways for 3'-CCA tail accommodation can be quantitatively distinguished, where the tail enters the PTC by moving past a pocket enclosed by Helix 89, 90, and 92, or through an alternate route formed by Helix 93 and the P-site tRNA. C2573, located within Helix 90, is shown to provide the largest contribution to this late-accommodation steric barrier, such that sub-Å perturbations to this residue can alter the time scale of tail accommodation by nearly an order of magnitude. In terms of biological function, these calculations suggest how this late-stage sterically induced barrier may contribute to tRNA proofreading by the ribosome.


Assuntos
Peptidil Transferases , Aminoacil-RNA de Transferência , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Peptidil Transferases/metabolismo , Ribossomos/química , RNA de Transferência/química , Biossíntese de Proteínas
8.
Nat Chem Biol ; 18(11): 1277-1286, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36138139

RESUMO

Orthosomycin antibiotics inhibit protein synthesis by binding to the large ribosomal subunit in the tRNA accommodation corridor, which is traversed by incoming aminoacyl-tRNAs. Structural and biochemical studies suggested that orthosomycins block accommodation of any aminoacyl-tRNAs in the ribosomal A-site. However, the mode of action of orthosomycins in vivo remained unknown. Here, by carrying out genome-wide analysis of antibiotic action in bacterial cells, we discovered that orthosomycins primarily inhibit the ribosomes engaged in translation of specific amino acid sequences. Our results reveal that the predominant sites of orthosomycin-induced translation arrest are defined by the nature of the incoming aminoacyl-tRNA and likely by the identity of the two C-terminal amino acid residues of the nascent protein. We show that nature exploits this antibiotic-sensing mechanism for directing programmed ribosome stalling within the regulatory open reading frame, which may control expression of an orthosomycin-resistance gene in a variety of bacterial species.


Assuntos
Antibacterianos , Ribossomos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ribossomos/metabolismo , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Sequência de Aminoácidos , Biossíntese de Proteínas
9.
Nucleic Acids Res ; 50(10): 5807-5817, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35609997

RESUMO

Type II toxin-antitoxin (TA) systems are two-gene modules widely distributed among prokaryotes. GNAT toxins associated with the DUF1778 antitoxins represent a large family of type II TAs. GNAT toxins inhibit cell growth by disrupting translation via acetylation of aminoacyl-tRNAs. In this work, we explored the evolutionary trajectory of GNAT toxins. Using LC/MS detection of acetylated aminoacyl-tRNAs combined with ribosome profiling, we systematically investigated the in vivo substrate specificity of an array of diverse GNAT toxins. Our functional data show that the majority of GNAT toxins are specific to Gly-tRNA isoacceptors. However, the phylogenetic analysis shows that the ancestor of GNAT toxins was likely a relaxed specificity enzyme capable of acetylating multiple elongator tRNAs. Together, our data provide a remarkable snapshot of the evolution of substrate specificity.


Assuntos
Antitoxinas , Toxinas Bacterianas , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Filogenia , RNA de Transferência/genética , Aminoacil-RNA de Transferência/genética , Sistemas Toxina-Antitoxina/genética
10.
J Biol Chem ; 298(3): 101657, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131263

RESUMO

A wide range of bacteria possess virulence factors such as aminoacyl-tRNA transferases (ATTs) that are capable of rerouting aminoacyl-transfer RNAs away from protein synthesis to conjugate amino acids onto glycerolipids. We recently showed that, although these pathways were thought to be restricted to bacteria, higher fungi also possess ergosteryl-3ß-O-L-aspartate synthases (ErdSs), which transfer the L-Asp moiety of aspartyl-tRNAAsp onto the 3ß-OH group of ergosterol (Erg), yielding ergosteryl-3ß-O-L-aspartate (Erg-Asp). Here, we report the discovery, in fungi, of a second type of fungal sterol-specific ATTs, namely, ergosteryl-3ß-O-glycine (Erg-Gly) synthase (ErgS). ErgS consists of a freestanding DUF2156 domain encoded by a gene distinct from and paralogous to that of ErdS. We show that the enzyme only uses Gly-tRNAGly produced by an independent glycyl-tRNA synthetase (GlyRS) to transfer glycine onto the 3ß-OH of Erg, producing Erg-Gly. Phylogenomics analysis also show that the Erg-Gly synthesis pathway exists only in Ascomycota, including species of biotechnological interest, and more importantly, in human pathogens, such as Aspergillus fumigatus. The discovery of a second type of Erg-aa not only expands the repertoire of this particular class of fungal lipids but suggests that Erg-aa synthases might constitute a genuine subfamily of lipid-modifying ATTs.


Assuntos
Ascomicetos , Ergosterol , Glicina , Aminoácidos , Ascomicetos/genética , Ascomicetos/metabolismo , Ácido Aspártico , Glicina/biossíntese , Glicina/genética , Glicina/metabolismo , Humanos , RNA Fúngico/genética , RNA Fúngico/metabolismo , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo
11.
Nucleic Acids Res ; 50(5): 2736-2753, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188576

RESUMO

In ribosomal translation, peptidyl transfer occurs between P-site peptidyl-tRNA and A-site aminoacyl-tRNA, followed by translocation of the resulting P-site deacylated-tRNA and A-site peptidyl-tRNA to E and P site, respectively, mediated by EF-G. Here, we report that mistranslocation of P-site peptidyl-tRNA and A-site aminoacyl-tRNA toward E and A site occurs when high concentration of EF-G triggers the migration of two tRNAs prior to completion of peptidyl transfer. Consecutive incorporation of less reactive amino acids, such as Pro and d-Ala, makes peptidyl transfer inefficient and thus induces the mistranslocation event. Consequently, the E-site peptidyl-tRNA drops off from ribosome to give a truncated peptide lacking the C-terminal region. The P-site aminoacyl-tRNA allows for reinitiation of translation upon accommodation of a new aminoacyl-tRNA at A site, leading to synthesis of a truncated peptide lacking the N-terminal region, which we call the 'reinitiated peptide'. We also revealed that such a drop-off-reinitiation event can be alleviated by EF-P that promotes peptidyl transfer of Pro. Moreover, this event takes place both in vitro and in cell, showing that reinitiated peptides during protein synthesis could be accumulated in this pathway in cells.


Assuntos
Fator G para Elongação de Peptídeos , Fatores de Alongamento de Peptídeos , Fator G para Elongação de Peptídeos/metabolismo , Peptídeos/química , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo
12.
Nat Commun ; 12(1): 5340, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504068

RESUMO

Free L-tryptophan (L-Trp) stalls ribosomes engaged in the synthesis of TnaC, a leader peptide controlling the expression of the Escherichia coli tryptophanase operon. Despite extensive characterization, the molecular mechanism underlying the recognition and response to L-Trp by the TnaC-ribosome complex remains unknown. Here, we use a combined biochemical and structural approach to characterize a TnaC variant (R23F) with greatly enhanced sensitivity for L-Trp. We show that the TnaC-ribosome complex captures a single L-Trp molecule to undergo termination arrest and that nascent TnaC prevents the catalytic GGQ loop of release factor 2 from adopting an active conformation at the peptidyl transferase center. Importantly, the L-Trp binding site is not altered by the R23F mutation, suggesting that the relative rates of L-Trp binding and peptidyl-tRNA cleavage determine the tryptophan sensitivity of each variant. Thus, our study reveals a strategy whereby a nascent peptide assists the ribosome in detecting a small metabolite.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , Ribossomos/genética , Triptofano/química , Substituição de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutação , Óperon , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Triptofano/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34413202

RESUMO

Inaccurate expression of the genetic code, also known as mistranslation, is an emerging paradigm in microbial studies. Growing evidence suggests that many microbial pathogens can deliberately mistranslate their genetic code to help invade a host or evade host immune responses. However, discovering different capacities for deliberate mistranslation remains a challenge because each group of pathogens typically employs a unique mistranslation mechanism. In this study, we address this problem by studying duplicated genes of aminoacyl-transfer RNA (tRNA) synthetases. Using bacterial prolyl-tRNA synthetase (ProRS) genes as an example, we identify an anomalous ProRS isoform, ProRSx, and a corresponding tRNA, tRNAProA, that are predominately found in plant pathogens from Streptomyces species. We then show that tRNAProA has an unusual hybrid structure that allows this tRNA to mistranslate alanine codons as proline. Finally, we provide biochemical, genetic, and mass spectrometric evidence that cells which express ProRSx and tRNAProA can translate GCU alanine codons as both alanine and proline. This dual use of alanine codons creates a hidden proteome diversity due to stochastic Ala→Pro mutations in protein sequences. Thus, we show that important plant pathogens are equipped with a tool to alter the identity of their sense codons. This finding reveals the initial example of a natural tRNA synthetase/tRNA pair for dedicated mistranslation of sense codons.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Códon , Escherichia coli/metabolismo , Código Genético , Biossíntese de Proteínas , Aminoacil-RNA de Transferência/metabolismo , Streptomyces/metabolismo , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Prolina/genética , Prolina/metabolismo , Aminoacil-RNA de Transferência/genética , Homologia de Sequência , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento , Especificidade por Substrato
14.
Nature ; 595(7869): 741-745, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234344

RESUMO

Peptide-chain elongation during protein synthesis entails sequential aminoacyl-tRNA selection and translocation reactions that proceed rapidly (2-20 per second) and with a low error rate (around 10-3 to 10-5 at each step) over thousands of cycles1. The cadence and fidelity of ribosome transit through mRNA templates in discrete codon increments is a paradigm for movement in biological systems that must hold for diverse mRNA and tRNA substrates across domains of life. Here we use single-molecule fluorescence methods to guide the capture of structures of early translocation events on the bacterial ribosome. Our findings reveal that the bacterial GTPase elongation factor G specifically engages spontaneously achieved ribosome conformations while in an active, GTP-bound conformation to unlock and initiate peptidyl-tRNA translocation. These findings suggest that processes intrinsic to the pre-translocation ribosome complex can regulate the rate of protein synthesis, and that energy expenditure is used later in the translocation mechanism than previously proposed.


Assuntos
Fator G para Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , Aminoacil-RNA de Transferência/genética , Ribossomos/metabolismo , Códon , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , RNA Mensageiro/genética
15.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282016

RESUMO

Blasticidin S is a peptidyl nucleoside antibiotic. Its biosynthesis involves a cryptic leucylation and two leucylated intermediates, LDBS and LBS, have been found in previous studies. Leucylation has been proposed to be a new self-resistance mechanism during blasticidin S biosynthesis, and the leucyl group was found to be important for the methylation of ß-amino group of the arginine side chain. However, the responsible enzyme and its associated mechanism of the leucyl transfer process remain to be elucidated. Here, we report results investigating the leucyl transfer step forming the intermediate LDBS in blasticidin biosynthesis. A hypothetical protein, BlsK, has been characterized by genetic and in vitro biochemical experiments. This enzyme catalyzes the leucyl transfer from leucyl-transfer RNA (leucyl-tRNA) to the ß-amino group on the arginine side chain of DBS. Furthermore, BlsK was found to contain an iron-sulfur cluster that is necessary for activity. These findings provide an example of an iron-sulfur protein that catalyzes an aminoacyl-tRNA (aa-tRNA)-dependent amide bond formation in a natural product biosynthetic pathway.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Streptomyces/enzimologia , Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Vias Biossintéticas , Proteínas Ferro-Enxofre/genética , Nucleosídeos/biossíntese , Aminoacil-RNA de Transferência/genética , Especificidade por Substrato
16.
RNA Biol ; 18(12): 2363-2375, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33938388

RESUMO

Kinetic characterization of ribosomal translocation is important for understanding the mechanism of elongation in protein synthesis. Here we have optimized a popular fluorescent-mRNA based translocation assay conducted in stopped-flow, by calibrating it with the functional tripeptide formation assay in quench-flow. We found that a fluorescently labelled mRNA, ten bases long from position +1 (mRNA+10), is best suited for both assays as it forms tripeptide at a fast rate equivalent to the longer mRNAs, and yet produces a large fluorescence change upon mRNA movement. Next, we compared the commonly used peptidyl tRNA analog, N-acetyl-Phe-tRNAPhe, with the natural dipeptidyl fMet-Phe-tRNAPhe in the stopped-flow assay. This analog translocates about two times slower than the natural dipeptidyl tRNA and produces biphasic kinetics. The rates reduce further at lower temperatures and with higher Mg2+ concentration, but improve with higher elongation factor G (EF-G) concentration, which increase both rate and amplitude of the fast phase significantly. In summary, we present here an improved real time assay for monitoring mRNA-translocation with the natural- and an N-Ac-analog of dipeptidyl tRNA.


Assuntos
Bioensaio/normas , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Cinética , Fatores de Alongamento de Peptídeos/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Ribossomos/genética , Espectrometria de Fluorescência
17.
Nucleic Acids Res ; 49(19): 10807-10817, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-33997906

RESUMO

In ribosomal translation, the accommodation of aminoacyl-tRNAs into the ribosome is mediated by elongation factor thermo unstable (EF-Tu). The structures of proteinogenic aminoacyl-tRNAs (pAA-tRNAs) are fine-tuned to have uniform binding affinities to EF-Tu in order that all proteinogenic amino acids can be incorporated into the nascent peptide chain with similar efficiencies. Although genetic code reprogramming has enabled the incorporation of non-proteinogenic amino acids (npAAs) into the nascent peptide chain, the incorporation of some npAAs, such as N-methyl-amino acids (MeAAs), is less efficient, especially when MeAAs frequently and/or consecutively appear in a peptide sequence. Such poor incorporation efficiencies can be attributed to inadequate affinities of MeAA-tRNAs to EF-Tu. Taking advantage of flexizymes, here we have experimentally verified that the affinities of MeAA-tRNAs to EF-Tu are indeed weaker than those of pAA-tRNAs. Since the T-stem of tRNA plays a major role in interacting with EF-Tu, we have engineered the T-stem sequence to tune the affinity of MeAA-tRNAs to EF-Tu. The uniform affinity-tuning of the individual pairs has successfully enhanced the incorporation of MeAAs, achieving the incorporation of nine distinct MeAAs into both linear and thioether-macrocyclic peptide scaffolds.


Assuntos
Aminoácidos/genética , Escherichia coli/genética , Fator Tu de Elongação de Peptídeos/química , Biossíntese de Proteínas , Aminoacil-RNA de Transferência/química , Thermus/genética , Aminoácidos/metabolismo , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Escherichia coli/metabolismo , Engenharia Genética/métodos , Cinética , Metilação , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Ligação Proteica , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Termodinâmica , Thermus/metabolismo
18.
Genes (Basel) ; 12(3)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809136

RESUMO

The twenty amino acids in the standard genetic code were fixed prior to the last universal common ancestor (LUCA). Factors that guided this selection included establishment of pathways for their metabolic synthesis and the concomitant fixation of substrate specificities in the emerging aminoacyl-tRNA synthetases (aaRSs). In this conceptual paper, we propose that the chemical reactivity of some amino acid side chains (e.g., lysine, cysteine, homocysteine, ornithine, homoserine, and selenocysteine) delayed or prohibited the emergence of the corresponding aaRSs and helped define the amino acids in the standard genetic code. We also consider the possibility that amino acid chemistry delayed the emergence of the glutaminyl- and asparaginyl-tRNA synthetases, neither of which are ubiquitous in extant organisms. We argue that fundamental chemical principles played critical roles in fixation of some aspects of the genetic code pre- and post-LUCA.


Assuntos
Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , Animais , Aspartato-tRNA Ligase/genética , Código Genético/genética , Humanos , Aminoacil-RNA de Transferência/genética
19.
Genes (Basel) ; 11(10)2020 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081015

RESUMO

One integral step in the transition from a nucleic acid encoded-genome to functional proteins is the aminoacylation of tRNA molecules. To perform this activity, aminoacyl-tRNA synthetases (aaRSs) activate free amino acids in the cell forming an aminoacyl-adenylate before transferring the amino acid on to its cognate tRNA. These newly formed aminoacyl-tRNA (aa-tRNA) can then be used by the ribosome during mRNA decoding. In Escherichia coli, there are twenty aaRSs encoded in the genome, each of which corresponds to one of the twenty proteinogenic amino acids used in translation. Given the shared chemicophysical properties of many amino acids, aaRSs have evolved mechanisms to prevent erroneous aa-tRNA formation with non-cognate amino acid substrates. Of particular interest is the post-transfer proofreading activity of alanyl-tRNA synthetase (AlaRS) which prevents the accumulation of Ser-tRNAAla and Gly-tRNAAla in the cell. We have previously shown that defects in AlaRS proofreading of Ser-tRNAAla lead to global dysregulation of the E. coli proteome, subsequently causing defects in growth, motility, and antibiotic sensitivity. Here we report second-site AlaRS suppressor mutations that alleviate the aforementioned phenotypes, revealing previously uncharacterized residues within the AlaRS proofreading domain that function in quality control.


Assuntos
Alanina-tRNA Ligase/metabolismo , Aminoácidos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Mutação , Proteoma/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Alanina-tRNA Ligase/genética , Sequência de Aminoácidos , Aminoácidos/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteoma/análise , Controle de Qualidade , Aminoacil-RNA de Transferência/genética , Homologia de Sequência , Especificidade por Substrato
20.
J Biol Chem ; 295(48): 16180-16190, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33051185

RESUMO

Accurate translation of genetic information into proteins is vital for cell sustainability. ProXp-ala prevents proteome-wide Pro-to-Ala mutations by hydrolyzing misacylated Ala-tRNAPro, which is synthesized by prolyl-tRNA synthetase. Bacterial ProXp-ala was previously shown to combine a size-based exclusion mechanism with conformational and chemical selection for the recognition of the alanyl moiety, whereas tRNAPro is selected via recognition of tRNA acceptor-stem elements G72 and A73. The identity of these critical bases changed during evolution with eukaryotic cytosolic tRNAPro possessing a cytosine at the corresponding positions. The mechanism by which eukaryotic ProXp-ala adapted to these changes remains unknown. In this work, recognition of the aminoacyl moiety and tRNA acceptor stem by human (Homo sapiens, or Hs) ProXp-ala was examined. Enzymatic assays revealed that Hs ProXp-ala requires C72 and C73 in the context of Hs cytosolic tRNAPro for efficient deacylation of mischarged Ala-tRNAPro The strong dependence on these bases prevents cross-species deacylation of bacterial Ala-tRNAPro or of Hs mitochondrial Ala-tRNAPro by the human enzyme. Similar to the bacterial enzyme, Hs ProXp-ala showed strong tRNA acceptor-stem recognition but differed in its amino acid specificity profile relative to bacterial ProXp-ala. Changes at conserved residues in both the Hs and bacterial ProXp-ala substrate-binding pockets modulated this specificity. These results illustrate how the mechanism of substrate selection diverged during the evolution of the ProXp-ala family, providing the first example of a trans-editing domain whose specificity evolved to adapt to changes in its tRNA substrate.


Assuntos
Aminoacil-tRNA Sintetases/química , Conformação de Ácido Nucleico , Aminoacil-RNA de Transferência/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Humanos , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...